Ditulis oleh Jim Clark pada 08-10-2007
Halaman
ini menjelaskan apa yang dimaksud dengan ikatan koordinasi (juga
disebut dengan kovalen dativ). Kamu membutuhkan pemahaman yang baik
tentang ikatan kovalen sederhana sebelum kamu memulainya
Ikatan Koordinasi (kovalen dativ)
Ikatan kovalen terbentuk melalui dua atom yang saling membagikan (sharing) pasangan elektron. Atom berikatan satu sama lain karena pasangan elektron ditarik oleh kedua inti atom.
Pada pembentukan ikatan kovalen yang sederhana, tiap atom mensuplai satu elektron pada ikatan – tetapi hal itu tidak terjadi pada kasus disini. Ikatan koordiansi (biasa juga disebut dengan ikatan kovalen dativ) adalah ikatan kovalen (penggunaan bersama pasangan elektron) yang mana kedua elektron berasal dari satu atom.
Untuk memudahkan halaman ini, kita akan menggunakan istilah ikatan koordinasi ? tetapi jika kamu lebih menyukai untuk mengebutnya dengan ikatan kovalen dativ, itu bukanlah suatu masalah!
Reaksi antara amonia dan hidrogen klorida
Jika kedua gas tak berwarna tersebut dicampurkan, maka akan terbentuk padatan berwarna putih seperti asap amonium klorida.
Ion amonium, NH4+, terbentuk melalui transfer ion hidrogen dari hidrogen klorida ke pasangan elektron mandiri pada molekul amonia.
Ketika ion amonium, NH4+,
terbentuk, empat hidrogen ditarik melalui ikatan kovalen dativ, karena
hanya inti hidrogen yang ditransferkan dari klor ke nitrogen.
Elektron kepunyaan hidrogen tertinggal pada klor untuk membentuk
ion klorida negatif.
Sekali saja ion amonium terbentuk hal ini menjadikannya tidak mungkin untuk membedakan antara kovalen dativ dengan ikatan kovalen biasa. Meskipun elektron ditunjukkan secara berlainan pada diagram, pada kenyataannya tidak ada perbedaan diantara keduanya.
Penggambaran ikatan koordinasi
Pada diagram yang sederhana, ikatan koordinasi ditunjukkan oleh tanda panah. Arah panah berasal dari atom yang mendonasikan pasangan elektron mandiri menuju atom yang menerimanya.
Proses pelarutan hidrogen klorida di
air untuk membuat asam hidroklorida
Terjadi sesuatu hal yang mirip. Ion hidrogen (H+) ditransferkan dari klor ke salah satu pasangan elektron mandiri pada atom oksigen.
Ion H3O+ sering kali disebut dengan ion hidroksonium, ion hidronium atau ion oksonium.
Pada pelajaran pengantar kimia, meskipun kamu berbicara tentang ion hidrogen (sebagai contoh pada asam), kamu sesungguhnaya membicarakan mengenai ion hidroksonium. Ion hidrogen secara sederhana adalah sebuah proton, dan terlalu reaktif untuk eksis dalam bentuk yang sebenarnya pada tabung reaksi.
Jika kamu menuliskan ion hidrogen dengan H+(aq), "(aq)" menunjukkan molekul air yang mana ion hidrogen tertarik pada molekul air tersebut. Ketika ion hidrogen bereaksi dengan sesuatu (alkali, misalnya), secara sederhana ion hidrogen menjadi terlepas dari molekul air lagi.
Catatan bahwa sekali saja ikatan koordinasi terbentuk, semua atom hidrogen yang menempel pada oksigen semuanya sepadan. Ketika ion hidrogen diuraikan kembali, ion hidrogen dapat menjadi yang tiga.
Reaksi antara amonia dan boron trifluorida, BF3
Jika sebelumnya kamu membaca halaman sebelumnya mengenai ikatan kovalen, kamu dapat mengingat bahwa boron trifluorida merupakan suatu senyawa yang tidak memiliki struktur gas mulia di sekeliling atom boronnya. Boron hanya mempunyai 3 pasangan elektron pada tingkat ikatannya, sedangkan boron sendiri memiliki ruangan untuk ditempati 4 pasang elektron. BF3 digambarkan sebagai molekul yang kekurangan elektron.
Pasangan elektron mandiri pada nitrogen dari molekul amonia dapat digunakan untuk menanggulangi kekurangan ini, dan senyawa yang terbentuk melibatkan ikatan koordinasi.
Penggunaan garis untuk menunjukkan
ikatan, hal ini dapat digambarkan dengan lebih sederhana sebagai:
Diagram yang kedua menunjukkan cara lain
yang dapat kamu gunakan untuk menggambarkan ikatan koordinasi. Ujung
nitrogen pada ikatan menjadi positif karena pasangan elektron bergerak
menjauh dari nitrogen menuju ke arah boron ? yang karena itu menjadi
negatif. Kita tidak akan menggunakan metode ini lagi ? metode ini lebih
membingungkan dibandingkan dengan metode yang hanya menggunakan tanda
panah.
Struktur alumunium klorida
Alumunium klorida menyublim (berubah dari keadaan padat menjadi gas) pada suhu sekitar 180°C. Jika senyawa ini mengandung ion maka senyawa ini akan memiliki titik leleh dan titik didih yang tinggi karena dayatarik yang kuat antara ion positif dengan ion negatif. Akibat hal ini ketika alumunium klorida menyublim pada temperatur yang relatif rendah, maka harus kovalen. Diagram titik-silang menunjukkan elektron terluar saja.
AlCl3, seperti BF3, merupakan molekul yang kekurangan elektron. Keduanya mirip, karena alumunium dan boron terletak pada golongan yang sama pada tabel periodik, sama halnya juga dengan fluor dan klor.
Pengukuran massa atom relatif rumus alumunium klorida menunjukkan bahwa rumus alumunium klorida dalam bentuk uap pada temperatur sublimasi bukan AlCl3, melainkan Al2Cl6. Alumuniun klorida eksis sebagai dimer (dua molekul bergabung menjadi satu). Ikatan antara dua molekul ini merupakan ikatan koordinasi, penggunaan pasangan elektron mandiri pada atom klor. Tiap-tiap atom klor memiliki tiga pasangan elektron mandiri, akan tetapi hanya dua yang penting saja yang ditunjukkan pada diagram.
Energi dilepaskan ketika dua ikatan
koordinasi terbentuk, dan karena itu dimer lebih stabil
dibandingkan dua molekul AlCl3 yang terpisah.
Ikatan pada ion logan yang terhidrasi
Molekul air ditarik dengan kuat ke arah ion dalam larutan – molekul air berkelompok di sekeliling ion positif atau ion negatif. Pada banyak kasus, dayatarik yang terjadi sangat besar yang mana terjadi pembentukan ikatan formal, dan ini hampir selalu benar pada semua ion logam positif. Ion dengan molekul air yang tertarik dinyatakan sebagai ion terhidrasi.
Meskipun alumunium klorida kovalen, ketika alumunium klorida dilarutkan dalam air, dapat terbentuk ion. Ikatan enam molekul air pada alumunium menghasilkan sebuah ion dengan rumus kimia Al(H2O)63+. Ion ini disebut ion heksaaquoalumunium – yang diterjemahkan sebagai enam ("hexa") molekul air (“aquoâ€) yang membungkus ion aluminium.
Ikatan yang terjadi disini (dan juga ion yang sejenis yang terbentuk dari sebagian besar logam yang lain) adalah koordinasi (kovalen dativ) dengan menggunakan pasangan elektron mandiri pada molekul air.
Aluminium adalah 1s22s22p63s23px1. Ketika terbentuk ion Al3+ alumunium kehilangan elektron pada tingkat ketiga menghasilkan 1s22s22p6.
Hal tersebut berarti bahwa semua orbital tingkat-3 sekarang menjadi kosong. Alumunium mereorganisasi (hibridisasi) enam orbital (3s, tiga 3p, dan dua 3d) untuk menghasilkan enam orbital baru yang semuanya memiliki energi yang sama. Keenam orbital hibrida tersebut menerima pasangan elektron mandiri dari enam molekul air.
Kamu mungkin heran kenapa alumunium memilih untuk menggunakan enam orbital dibandingkan empat atau delapan atau berapapun. Enam merupakan angka maksimal bagi molekul air yang memungkinkan untuk tepat mengelilingi ion alumunium (dan juga kebanyakan ion logan). Dengan membentuk jumlah ikatan maksimal, kondisi ini melepaskan paling banyak energi dan karena itu menjadikan paling stabil secara energetik. .
Hanya satu pasangan elektron mandiri
yang ditunjukkan pada tiap molekul. Pasangan elektron mandiri yang
lain terletak menjauh dari alumunium dan karena itu tidak
terlibat dalam ikatan. Ion yang dihasilkan terlihat seperti ini:
Karena pergerakan elektron mengarah ke
tengah ion, muatan 3+ tidak lagi berlokasi sepenuhnya pada alumunium,
tetapi sekarang melebar meliputi keseluruhan ion.
Dua molekul lebih
Karbon monoksida, CO
Karbon monoksida dapat diperhatikan sebagai molekul yang memiliki dua ikatan kovalen biasa antara karbon dan oksigen ditambah ikatan koordinasi dengan menggunakan pasangan elektron mandiri pada atom oksigen.
Asam nitrat, HNO3
Pada kasus ini, satu atom oksigen dapat tertarik pada nitrogen melalui ikatan koordinasi dengan menggunakan pasangan elektron mandiri pada atom nitrogen.
Pada faktanya struktur seperti ini
menyesatkan karena memberikan kesan bahwa dua atom oksigen pada bagian
sebelah kanan diagram bergabung ke atom nitrogen dengan cara yang
berbeda. Kedua ikatan merupakan ikatan yang identik pada panjang dan
kekuatannya, dan karena itu penata-ulangan elektron harus identik. Tidak
ada cara untuk menunjukan hal ini dengan mengunakan gambar
titik-silang. Ikatan mengalami delokalisasi.
Ikatan Koordinasi (kovalen dativ)
Ikatan kovalen terbentuk melalui dua atom yang saling membagikan (sharing) pasangan elektron. Atom berikatan satu sama lain karena pasangan elektron ditarik oleh kedua inti atom.
Pada pembentukan ikatan kovalen yang sederhana, tiap atom mensuplai satu elektron pada ikatan – tetapi hal itu tidak terjadi pada kasus disini. Ikatan koordiansi (biasa juga disebut dengan ikatan kovalen dativ) adalah ikatan kovalen (penggunaan bersama pasangan elektron) yang mana kedua elektron berasal dari satu atom.
Untuk memudahkan halaman ini, kita akan menggunakan istilah ikatan koordinasi ? tetapi jika kamu lebih menyukai untuk mengebutnya dengan ikatan kovalen dativ, itu bukanlah suatu masalah!
Reaksi antara amonia dan hidrogen klorida
Jika kedua gas tak berwarna tersebut dicampurkan, maka akan terbentuk padatan berwarna putih seperti asap amonium klorida.
Ion amonium, NH4+, terbentuk melalui transfer ion hidrogen dari hidrogen klorida ke pasangan elektron mandiri pada molekul amonia.
Sekali saja ion amonium terbentuk hal ini menjadikannya tidak mungkin untuk membedakan antara kovalen dativ dengan ikatan kovalen biasa. Meskipun elektron ditunjukkan secara berlainan pada diagram, pada kenyataannya tidak ada perbedaan diantara keduanya.
Penggambaran ikatan koordinasi
Pada diagram yang sederhana, ikatan koordinasi ditunjukkan oleh tanda panah. Arah panah berasal dari atom yang mendonasikan pasangan elektron mandiri menuju atom yang menerimanya.
Terjadi sesuatu hal yang mirip. Ion hidrogen (H+) ditransferkan dari klor ke salah satu pasangan elektron mandiri pada atom oksigen.
Ion H3O+ sering kali disebut dengan ion hidroksonium, ion hidronium atau ion oksonium.
Pada pelajaran pengantar kimia, meskipun kamu berbicara tentang ion hidrogen (sebagai contoh pada asam), kamu sesungguhnaya membicarakan mengenai ion hidroksonium. Ion hidrogen secara sederhana adalah sebuah proton, dan terlalu reaktif untuk eksis dalam bentuk yang sebenarnya pada tabung reaksi.
Jika kamu menuliskan ion hidrogen dengan H+(aq), "(aq)" menunjukkan molekul air yang mana ion hidrogen tertarik pada molekul air tersebut. Ketika ion hidrogen bereaksi dengan sesuatu (alkali, misalnya), secara sederhana ion hidrogen menjadi terlepas dari molekul air lagi.
Catatan bahwa sekali saja ikatan koordinasi terbentuk, semua atom hidrogen yang menempel pada oksigen semuanya sepadan. Ketika ion hidrogen diuraikan kembali, ion hidrogen dapat menjadi yang tiga.
Reaksi antara amonia dan boron trifluorida, BF3
Jika sebelumnya kamu membaca halaman sebelumnya mengenai ikatan kovalen, kamu dapat mengingat bahwa boron trifluorida merupakan suatu senyawa yang tidak memiliki struktur gas mulia di sekeliling atom boronnya. Boron hanya mempunyai 3 pasangan elektron pada tingkat ikatannya, sedangkan boron sendiri memiliki ruangan untuk ditempati 4 pasang elektron. BF3 digambarkan sebagai molekul yang kekurangan elektron.
Pasangan elektron mandiri pada nitrogen dari molekul amonia dapat digunakan untuk menanggulangi kekurangan ini, dan senyawa yang terbentuk melibatkan ikatan koordinasi.
Struktur alumunium klorida
Alumunium klorida menyublim (berubah dari keadaan padat menjadi gas) pada suhu sekitar 180°C. Jika senyawa ini mengandung ion maka senyawa ini akan memiliki titik leleh dan titik didih yang tinggi karena dayatarik yang kuat antara ion positif dengan ion negatif. Akibat hal ini ketika alumunium klorida menyublim pada temperatur yang relatif rendah, maka harus kovalen. Diagram titik-silang menunjukkan elektron terluar saja.
AlCl3, seperti BF3, merupakan molekul yang kekurangan elektron. Keduanya mirip, karena alumunium dan boron terletak pada golongan yang sama pada tabel periodik, sama halnya juga dengan fluor dan klor.
Pengukuran massa atom relatif rumus alumunium klorida menunjukkan bahwa rumus alumunium klorida dalam bentuk uap pada temperatur sublimasi bukan AlCl3, melainkan Al2Cl6. Alumuniun klorida eksis sebagai dimer (dua molekul bergabung menjadi satu). Ikatan antara dua molekul ini merupakan ikatan koordinasi, penggunaan pasangan elektron mandiri pada atom klor. Tiap-tiap atom klor memiliki tiga pasangan elektron mandiri, akan tetapi hanya dua yang penting saja yang ditunjukkan pada diagram.
Ikatan pada ion logan yang terhidrasi
Molekul air ditarik dengan kuat ke arah ion dalam larutan – molekul air berkelompok di sekeliling ion positif atau ion negatif. Pada banyak kasus, dayatarik yang terjadi sangat besar yang mana terjadi pembentukan ikatan formal, dan ini hampir selalu benar pada semua ion logam positif. Ion dengan molekul air yang tertarik dinyatakan sebagai ion terhidrasi.
Meskipun alumunium klorida kovalen, ketika alumunium klorida dilarutkan dalam air, dapat terbentuk ion. Ikatan enam molekul air pada alumunium menghasilkan sebuah ion dengan rumus kimia Al(H2O)63+. Ion ini disebut ion heksaaquoalumunium – yang diterjemahkan sebagai enam ("hexa") molekul air (“aquoâ€) yang membungkus ion aluminium.
Ikatan yang terjadi disini (dan juga ion yang sejenis yang terbentuk dari sebagian besar logam yang lain) adalah koordinasi (kovalen dativ) dengan menggunakan pasangan elektron mandiri pada molekul air.
Aluminium adalah 1s22s22p63s23px1. Ketika terbentuk ion Al3+ alumunium kehilangan elektron pada tingkat ketiga menghasilkan 1s22s22p6.
Hal tersebut berarti bahwa semua orbital tingkat-3 sekarang menjadi kosong. Alumunium mereorganisasi (hibridisasi) enam orbital (3s, tiga 3p, dan dua 3d) untuk menghasilkan enam orbital baru yang semuanya memiliki energi yang sama. Keenam orbital hibrida tersebut menerima pasangan elektron mandiri dari enam molekul air.
Kamu mungkin heran kenapa alumunium memilih untuk menggunakan enam orbital dibandingkan empat atau delapan atau berapapun. Enam merupakan angka maksimal bagi molekul air yang memungkinkan untuk tepat mengelilingi ion alumunium (dan juga kebanyakan ion logan). Dengan membentuk jumlah ikatan maksimal, kondisi ini melepaskan paling banyak energi dan karena itu menjadikan paling stabil secara energetik. .
Dua molekul lebih
Karbon monoksida, CO
Karbon monoksida dapat diperhatikan sebagai molekul yang memiliki dua ikatan kovalen biasa antara karbon dan oksigen ditambah ikatan koordinasi dengan menggunakan pasangan elektron mandiri pada atom oksigen.
Pada kasus ini, satu atom oksigen dapat tertarik pada nitrogen melalui ikatan koordinasi dengan menggunakan pasangan elektron mandiri pada atom nitrogen.
0 comments:
Post a Comment